Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Convolution neural network model compression method based on pruning and tensor decomposition
GONG Kaiqiang, ZHANG Chunmei, ZENG Guanghua
Journal of Computer Applications    2020, 40 (11): 3146-3151.   DOI: 10.11772/j.issn.1001-9081.2020030362
Abstract663)      PDF (1488KB)(632)       Save
Focused on the problem that the huge number of parameters and calculations of Convolutional Neural Network (CNN) limit the application of CNN on resource-constrained devices such as embedded systems, a neural network compression method of statistics based network pruning and tensor decomposition was proposed. The core idea was to use the mean and variance as the basis for evaluating the weight contribution. Firstly, Lenet5 was used as a pruning model, the mean and variance distribution of each convolutional layer of the network were clustered to separate filters with weaker extracted features, and the retained filters were used to reconstruct the next convolutional layer. Secondly, the pruning method was combined with tensor decomposition to compress the Faster Region with Convolutional Neural Network (Faster RCNN). The pruning method was adopted for the low-dimensional convolution layers, and the high-dimensional convolutional layers were decomposed into three cascaded convolutional layers. Finally, the compressed model was fine-tuned, making the model be at the convergence state once again on the training set. Experimental results on the PASCAL VOC test set show that the proposed method reduces the storage space of the Faster RCNN model by 54% while the decrease of the accuracy is only 0.58%, at the same time, the method can reach 1.4 times acceleration of forward computing on the Raspberry Pi 4B system, which helpful for the deployment of deep CNN models on resource-constrained embedded devices.
Reference | Related Articles | Metrics